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Abs@uct -An implementation of perfect matched layer 
(PML) boundary conditions for 2-D envelope finite element 
(EVFE) techniques is proposed. The performance of PML is 
tested for different excitation modes and number of layers. It 
shows overall 50dB absorption with a 16 layers absorber. 
Furthermore, the extended EVFE formulation for structures 
containing dispersive medium is also presented. Numerical 
results generated show good agreements with analytical 
results. 

I. INTRODUCTION 

It has been well-known that time-domain techniques 
have higher computational effkiency for broadband 
simulation while frequency domain approaches are more 
efficient for narrow band cases. Recently a novel 
technique called envelope finite element (EVFE) is 
proposed to simulate the time-domain envelopes of 
electromagnetic waves. It has been demonstrated that 
EVFE technique is computational efficient for both narrow 
band and broadband problems. Compared to time domain 
techniques, it can use much sparser time steps that are only 
limited by the bandwidth of the signal. Compared to 
frequency domain techniques, it requires only one time 
generation and inversion of finite element matrix over the 
interested frequency band. It is expected that this 
technique can be widely used for modeling of modem 
wireless and optical communication components where the 
modulation signal bandwidth is only a fraction of the 
carrier frequency. 

In the original formulation proposed in [l], the 
absorbing boundary condition (ABC) is developed for 
termination of computational area. This limits the 
computational efficiency and applicability of EVFE 
techniques to complicated EM structures. As in other 
partial differential equation based numerical techniques, 
the ideal choice for the mesh truncation would be perfectly 
matched layer (PML) [2][3]. In this paper, the PML 
formulation for EVFE technique is developed and an 
overall performance of 50dB absorption is achieved for a 
broad range of incident angles. Furthermore, the 

formulation is extended to include the structures with 
dispersive medium [4][5]. To model the memory effects of 
the dispersive medium, instead of recursive convolution 
employed in other time-domain techniques, a mutual 
differential method is proposed and is verified to be 
computational efficient and accurate for EVFE techniques. 

This paper is organized as follows. Section II presents 
the EVFE formulation implementing the anisotropic PML. 
Two 2-D numerical examples are presented here to testify 
the validity of the formulations. In section III, we use 
EVFE with PML to analyze plasma, a simple dispersive 
medium. Finally, conclusions are drawn in Section IV. 

II. PML FOR EVFE FORMULATION 

A general time-harmonic form of Maxwell equations in 
PML regions can be written as: 

where 

= 

yz ss 0 0 
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and Si =l+ai, i = x,y,z (3) 
jmo 

For simplicity, we just consider the 2-D TM or TEM case 
with PML set in one direction, say, x direction, therefore, 
(1) is reduced to: 

(4) 
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In time-domain, (4) can be written as: 

LVzH -& a2Hz : 2oz aHz +dH 

r E, 2 c,’ at2 E, at c,’ = I (5) 
+vxJ.,, 

r 
Let w, be the carrier frequency, and V(t) and j(t) be the 

envelope of the magnetic field and excitation current, 

density, respectively. Then we can write H, and ji in a 

modulated signal format as follows: 

H,(t) = V(t)e’“’ 

-?i (t) = j(t)ejq’ 
(6) 

Substituting (5) into (6), an envelope PDE is created: 

+V’V(t)-5 
r CO [ 

(jw, +$)’ +2(jw, +?I$+$ 
0 I 

7(t) =-pxi;,, I 
(7) 

Testing equation (7) with a testing function 7’, the 
equation (7) is decomposed into: 

Consider a 2-D parallel waveguide example, PML is 
backed by Perfect Electric Conductor (PEC). Obviously, 
the path integral of equation (8) can be vanished. Using 
Galerkin method to solve (8), we get a difference equation: 

2 

[T]fi+[B]d”+[S]v+f=O 
dt2 dt 

(9) 

(10) 

T, B, S are matrixes and f  is a vector, they are defined by 
(10). Using Newmark-Beta formulation [l] to discretize 
(9) in time domain: 

[ 
$+g+y]V(n+l)=[$J-+,,, 

[ 

VI [Bl iSI --g+z-y- v(n-l)- 1 f(n+1)+2f@>+f(n-l> 
4 

(11) 

To evaluate the performance of the PML, we set PML at 
the two ends of the parallel waveguide and excitation 
current density in the middle of computational area. In 
order to reduce the discretization error, we use spatially 
variant conductivity along the normal axis: 

(12) 

where x0 is the interface of the PML region and non-PML 

region, d is the depth of the PML and m is the order the 
polynomial variation. Usually we choose m =2. 
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Fig. 1. Performance of PML for different TM modes 
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Fig. 2. Performance of PML for different layers 

Fig. 1 shows the magnitude of&, inside the empty 

waveguide for different TM modes. In this case, we 
choose Ax = 0,0003m, Ay = O.O05m, carrier frequency 

as 1OOGHz and the excitation Guassian pulse’s -25db 
bandwidth is about SOGHz. The PML performance is 
tested by TEM, TMl, TM2, TM3 modes which are 
corresponding to different incident angels: 
0”,17.5”,36.9”,64.2”. For different TM modes, the 

reflection of PML can be as small as -50db by carefully 
choosing Q,,, . 

Fig. 2 is the magnitude ofS,, versus the different PML 

depths. All the parameters are the same as the previous 
case except that the excitation’s bandwidth is about 
16GHz. The result indicates that the larger the PML depth, 
the better the PML performs. This is because as we 
increase the depth, we must decrease theOmx, thus the 

field inside the PML will decay more gradually so that the 
discretization error gets smaller. When we set the PML 
layers more than 16, we can easily get a reflection lower 
than -5Odb. 

III ANALYSIS OF DISPERSIVE MEDIUM USING 
EVFE 

The general frequency domain second order wave 
equation in dispersive medium can be written as: 

(13) 

First, consider a simple kind of dispersive medium plasma, 
therefore the complex permittivity is: 

E(W) = E, + +0 
jw(jw + v, > (14) 

where up denotes the plasma frequency, and vc is the. 

damping frequency. For simplicity, we assume that only 

the TEM mode exists in the plasma and the plasma is 
source free. Thus, equations (13) and (14) can be written 
in time domain forms as: 

1 a=E -Lv24 +----L--- 4 W) =o 

Pr c,’ at* c,’ at 
(15) 

q(t) = exp(-v,t)u(t) @E,(t) (16) 

where u(t) is the unit step function and @denotes the 

convolution. 
Customarily, to solve equation (16), the “Recursive 

Convolution Method” [6] is used. Nevertheless, if this 
method is directly employed in EVFE technique, in most 
cases we cannot obtain an accurate or convergent result, 
because the time step in EVFE is usually so sparse that the 
integral’s precision deteriorates quickly. Here “Mutual 
Difference Method” is employed, by which a highly 
precise result can be gained. We use the difference form of 
equation ( 16): 

(17) 

Then define the field and source in modulated signal 
format: 

E,(t) = U(t)e’% 

q(t) = qb(t)e’%’ 
(18) 

Associate (16),(18),(19) and impose the EVFE solver. 
Ultimately two partial difference equations about the 
signal envelopes can be obtained: 

2 

[A]* + [B]d” + [Cju + [II]- + [El- d2@ d@ 
dt2 dt dt2 dt (19 

+[Fb=O 
4w 
at + (9, + v, MO> = u(t) (20) 

Use Newmark-Beta formulation to discretize the signal 
envelopes U(t) and #(t) in equations (19) and (20). In 
time domain: 

[~,E(n+l>=[~,E(n>+[~,L(n-l)+[~,b(n+l) 
+kbw+k,b(~ 
@(n+l)=a.$(n)+b.e(n-l)+c+u(n+l)+d.u(n) 

+e.u(n-1) 

(21) 
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[K~ 1 i = l,..., 5 are the system matrixes and a, b, c, d , e are 

constant numbers. After associating these two equations,. 
and solving them, the complex signal envelope vectors in 
time domain will be obtained. 
To testify the validity of the formulations derived with 
EVFE technique, we calculate the Sl 1 and S21 of a 
plasma slab with a thickness of 2cm. The plasma 
frequency is up = 28.76.2x rds and damping: 

frequency is v, = 20G radls. 

Fig. 3 shows the computational model, which is a 
parallel waveguide partially filled with plasma. We use 
PML to truncate the EVFE meshes in order to temper the 
reflection error from the two ends. Since we are only 
interested about a small bandwidth (about 2OGhz) near the 
plasma frequency, thus we can set the carrier frequency for 
the modulated signals to be 31Ghz and let the bandwidth 
of the excitation Gaussian pulse be 20Ghz. Since the time 
step in EVFE technique is only limited by the signal’s 
bandwidth, the time step is at least 4 times sparser than 
that is required by a FETD code. 

‘~ 

Fig. 3 The computational model for a plasma slab 

Fig. 4 and Fig. 5 is the magnitude of the plasma slab’s 
S11 and S21, which denote the refection coefficient and 
transmission coefficient of the plasma slab. The result of 
EVFE with PML agrees well with the analytical solution 
using plane wave theory. 

IV CONCLUSION 

In this paper, the anisotropic PML has been implemented 
into the EVFE algorithm. Numerical examples have been 
presented to evaluate the PML’s performance. More than 
50db overall absorption is achieved when a 16 layers 
absorber is used. The EVFE formulations for dispersive 
medium are also derived here and a plasma example is 
presented to testify the validity of the formulations.. 
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Fig. 4 Magnitude of Sl 1 of the plasma slab 
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Fig. 5 Magnitude of S2 1 of the plasma slab 
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