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Abstract —An implementation of perfect ‘matched layer
(PML) boundary conditions for 2-D envelope finite element
(EVFE) techniques is proposed. The performance of PML is
tested for different excitation modes and number of layers. It
shows overall 50dB absorption with a 16 layers absorber.
Furthermore, the extended EVFE formulation for structures
containing dispersive medium is also presented. Numerical
results generated show good agreements with analytical
results.

I. INTRODUCTION

It has been well-known that time-domain techniques
have higher computational efficiency for broadband
simulation while frequency domain approaches are more
efficient for narrow band cases. Recently a novel
technique called envelope finite element (EVFE) is
proposed to simulate the time-domain envelopes of
electromagnetic waves. It has been demonstrated that
EVFE technique is computational efficient for both narrow
band and broadband problems. Compared to time domain
techniques, it can use much sparser time steps that are only
limited by the bandwidth of the signal. Compared to
frequency domain techniques, it requires only one time
generation and inversion of finite element matrix over the
interested frequency band. It is expected that this
technique can be widely used for modeling of modern
wireless and optical communication components where the
modulation signal bandwidth is only a fraction of the
carrier frequency.

In the original formulation proposed in [1], the
absorbing boundary condition (ABC) is developed for
termination of computational area. This limits the
computational efficiency and applicability of EVFE
techniques to complicated EM structures. As in other
partial differential equation based numerical techniques,
the ideal choice for the mesh truncation would be perfectly
matched layer (PML) [2](3]. In this paper, the PML
formulation for EVFE technique is developed and an
overall performance of 50dB absorption is achieved for a
broad range of incident angles. Furthermore, the

formulation is extended to include the structures with
dispersive medium [4][5]. To model the memory effects of
the dispersive medium, instead of recursive convolution
employed in other time-domain techniques, a mutual
differential method is proposed and is verified to be
computational efficient and accurate for EVFE techniques.
This paper is organized as follows. Section II presents
the EVFE formulation implementing the anisotropic PML.
Two 2-D numerical examples are presented here to testify
the validity of the formulations. In section III, we use
EVFE with PML to analyze plasma, a simple dispersive
medium. Finally, conclusions are drawn in Section IV.

II. PML FOR EVFE FORMULATION

A general time-harmonic form of Maxwell equations in
PML regions can be written as:
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For simplicity, we just consider the 2-D TM or TEM case
with PML set in one direction, say, x direction, therefore,
(1) is reduced to:
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In time-domain, (4) can be written as:
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Let @, be the carrier frequency, and ¥(f) and j(f) be the

envelope of the magnetic field and excitation current,

density, respectively. Then we can write /, and ji ina

modulated signal format as follows:
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Substituting (5) into (6), an envelope PDE is created:
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Testing equation (7) with a testing function 7', the
equation (7) is decomposed into:

—VT vy + Lz (o, + 22y
J’ ¢ 0 &
2
l+2(ja, +~—-)—g— gt —)-V-T

ds = cf—Ta dl+” (VXJ),-T-ds (8)

Consider a 2-D parallel waveguide example, PML is
backed by Perfect Electric Conductor (PEC). Obviously,
the path integral of equation (8) can be vanished. Using
Galerkin method to solve (8), we get a difference equation:
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T, B, S are matrixes and f is a vector, they are defined by
(10). Using Newmark-Beta formulation [1] to discretize
(9) in time domain:
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To evaluate the performance of the PML, we set PML at
the two ends of the parallel wavegnide and excitation
current density in the middle of computational area. In
order to reduce the discretization error, we use spatially
variant conductivity along the normal axis:

) (12)
Je,d”
where x, is the interface of the PML region and non-PML

region, d is the depth of the PML and m is the order the
polynomial variation. Usually we choose m =2.
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Fig. 1. Performance of PML for different TM modes
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Fig. 2. Performance of PML for different layers

Fig. 1 shows the magnitude of§,, inside the empty

waveguide for different TM modes. In this case, we
choose Ax=0.0003m, Ay=0.005m, carrier frequency
as 100GHz and the excitation Guassian pulse’s -25db
bandwidth is about 50GHz. The PML performance is
tested by TEM, TM1, TM2, TM3 modes which are
corresponding  to  different  incident  angels:
0°,17.5°,36.9°,64.2°, For different TM modes, the

reflection of PML can be as small as -50db by carefuily
choosing & .

Fig. 2 is the magnitude of$, versus the different PML

depths. All the parameters are the same as the previous
case except that the excitation’s bandwidth is about
16GHz. The result indicates that the larger the PML depth,
the better the PML performs. This is because as we
increase the depth, we must decrease the O e » thus the

field inside the PML will decay more gradually so that the
discretization error gets smaller. When we set the PML
layers more than 16, we can easily get a reflection lower
than -50db.

IIT ANALYSIS OF DISPERSIVE MEDIUM USING
EVFE

The general frequency domain second order wave
equation in dispersive medium can be written as:

1 - - -
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First, consider a simple kind of dispersive medium plasma,
therefore the complex permittivity is:
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wherea)p denotes the plasma frequency, and v is the.

damping frequency. For simplicity, we assume that only

the TEM mode exists in the plasma and the plasma is
source free. Thus, equations (13) and (14) can be written
in time domain forms as:
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where 7(r)is the unit step function and ® denotes the

convolution.

Customarily, to solve equation (16), the “Recursive
Convolution Method” [6] is used. Nevertheless, if this
method is directly employed in EVFE technique, in most
cases we cannot obtain an accurate or convergent result,
because the time step in EVFE is usually so sparse that the
integral’s precision deteriorates quickly. Here “Mutual
Difference Method” is employed, by which a highly
precise result can be gained. We use the difference form of
equation (16):
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Then define the field and source in modulated signal
format:

E, () =U(e™ as8)
P(0)=p(n)e’™

Associate (16),(18),(19) and impose the EVFE solver.
Ultimately two partial difference equations about the
signal envelopes can be obtained:
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Use Newmark-Beta formulation to discretize the signal
envelopes U(¢) and ¢(f) in equations (19) and (20). In
time domain:
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[Ki], i=1,..,5 are the system matrixes and a,b,c,d ,e are

constant numbers. After associating these two equations,
and solving them, the complex signal envelope vectors in
time domain will be obtained.

To testify the validity of the formulations derived with
EVFE technique, we calculate the S1! and S21 of a
plasma slab with a thickness of 2cm. The plasma
frequency is @, =28.7G-2x rad/s and damping
frequency is v, = 20G rad/s.

Fig. 3 shows the computational model, which is a
parallel waveguide partially filled with plasma. We use
PML to truncate the EVFE meshes in order to temper the
reflection error from the two ends. Since we are only
interested about a small bandwidth (about 20Ghz) near the
plasma frequency, thus we can set the carrier frequency for
the modulated signals to be 31Ghz and let the bandwidth
of the excitation Gaussian pulse be 20Ghz. Since the time
step in EVFE technique is only limited by the signal’s
bandwidth, the time step is at least 4 times sparser than
that is required by a FETD code.

£

Fig. 3 The computational model for a plasma slab

Fig. 4 and Fig. 5 is the magnitude of the plasma slab’s
S11 and S21, which denote the refection coefficient and
transmission coefficient of the plasma slab. The resuit of
EVFE with PML agrees well with the analytical solution
using plane wave theory.

IV CONCLUSION

In this paper, the anisotropic PML has been implemented
into the EVFE algorithm. Numerical examples have been
presented to evaluate the PML’s performance. More than
50db overall absorption is achieved when a 16 layers
absorber is used. The EVFE formulations for dispersive
medium are also derived here and a plasma example is
presented to testify the validity of the formulations..
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Fig. 4 Magnitude of S11 of the plasma slab
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Fig. 5 Magnitude of S21 of the plasma slab
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